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We study generalization in a fully connected two-layer neural network with multiple output nodes. Similar
to the learning of fully connected committee machine, the learning is characterized by a discontinuous phase
transition between the permutation symmetric phase and the permutation symmetry breaking phase. We find
that the learning curve in the permutation symmetric phase is universal, irrespective of the number of output
nodes. The first-order phase transition point, i.e., the critical number of examples required for perfect learning,
is inversely proportional to the number of outputs. The replica calculation shows good agreement with Monte
Carlo simulation.@S1063-651X~96!11308-8#

PACS number~s!: 87.101e, 05.501q, 64.60.Cn

Learning from examples in layered neural networks has
been a common interest of statistical mechanics and other
related areas such as computer science and mathematical sta-
tistics for the last few years@1#. Following the statistical
mechanics formulation of Gardner@2,3#, there have been
many efforts to study learning from examples in feed-
forward neural networks such as the perceptron@4–8#.
Whereas most of the mathematical approaches gave general
asymptotic bounds@9,10#, statistical mechanics was able to
predict a precise learning curve for a specific model. Spe-
cially, an interesting first-order phase transition was found in
the single-layer perceptron with binary weights. This first-
order phase transition was interpreted as a sudden learning of
the perceptron related to the discrete phase space structure
@5,6,8#. Recently, there has been also some progress in the
study of the generalization in multilayered neural networks
from a statistical physics perspective. Special attention was
paid to a two-layer network called a committee machine, and
a discontinuous phase transition originating from a different
mechanism was found@11–15#.

Most of the studies of generalization have concerned
learning of a network with a single output node. In particu-
lar, theoretical studies concentrate on learning a dichotomy
rule. On the other hand, neural networks used for real world
applications, such as classification tasks, usually need mul-
tiple output nodes. Understanding the effect of multiple out-
put in a multilayer perceptron would be a meaningful step,
which extends the relevance of the theory from toy models to
more realistic neural networks. It can reduce the gap between
theories and practice.

Here, we present a study of generalization in a fully con-
nected two-layer perceptron with multiple output nodes.
Consider a two-layer neural network withN input nodes,
M hidden nodes, andK output nodes. In the fully connected
architecture, each input node is connected to all the hidden
nodes and each hidden node is connected to all the output
nodes. In this study, we consider binary weights and take the
limit whereN@M@1.

In our previous work@14#, we studied generalization in a
fully connected committee machine with binary weights,

which corresponds to the caseK51 in this work. When the
number of examples is of the order ofN, the system is in the
permutation symmetric~PS! phase. In the PS phase, the gen-
eralization error decreases more rapidly than expected from
the asymptotic behavior of the upper bounds predicted by the
Vapnik-Chervonenkis approach and others@9,10#. As the
number of examples,P, grows to the order ofMN the gen-
eralization error converges to a constant value. When the
number of examples reaches a critical value, the system un-
dergoes a first-order phase transition driven by permutation
symmetry breaking~PSB!. Above the transition point, the
system immediately falls into a state of perfect learning.

The motivation of this work is to study whether this pic-
ture is also relevant in a network with multiple output nodes.
The discontinuous learning curve is also observed in the neu-
ral network with multiple output nodes. Interestingly the
learning curve in the permutation symmetric phase is the
same irrespective of the number of output nodes. However,
the first-order transition occurs for a smaller number of ex-
amples, inversely proportional to the number of outputs.
These results are obtained from the replica calculation and
the Monte Carlo simulation.

We consider a student network learning a realizable rule
from the examples provided by a teacher with the same ar-
chitecture. The network maps input vectors,
Sl5(Si

l , . . . ,SN
l ) to output vectors,s5(s1 , . . . ,sK) as

sk~W;Sl !5g2FM2
1
2(

j

M

Wkj
~2!g1SN2

1
2(

i

N

Wji
~1!Si

l D G . ~1!

Here,W5$Wji
(1) ,Wkj

(2)% is a set of synaptic weights whose
elementWji

(1) denotes the first-layer weight between thei th
input node and thej th hidden node, andWkj

(2) denotes the
second-layer weight between thej th hidden node and the
kth output node. The transfer functions of the hidden nodes
and the output nodes areg1(x) and g2(x), respectively. In
this paper, we will consider the caseg1(x)
5g2(x)5sgn(x). The weights of the teacher are given by
W05$Wji

0(1) ,Wkj
0(2)%.
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The energy of the system is defined as a sum of errors
over output nodes and examples:

E5(
l51

P

e~W;Sl !, ~2!

e~W;Sl !5 (
k51

K

Q„2sk~W
0;Sl !sk~W;Sl !…, ~3!

whereQ(x) is the Heaviside step function. The training pro-
cedure is assumed to be a stochastic process that leads to a
Gibbs distribution of the weights after a long time. The equi-
librium probability distribution of weights is given by

P~W!5Z21exp@2bE~W!#, ~4!

whereb is the inverse temperature and the normalization
factorZ is the partition function:

Z5E dm ~W!exp@2bE~W!#. ~5!

We use the Monte Carlo method to simulate this training
algorithm.

The performance of the network is measured by the gen-
eralization functione(W)5(1/K)*dSe(W;S), where *dS
represents an average over the whole space of inputs. The
generalization erroreg is defined byeg5kk ^e(W)&Tll where
kk ll denotes the quenched average over the examples and
^ &T denotes the thermal average over the distribution of Eq.
~4!.

The replica partition function can be written as

^^Zn&&5TrWexp@PGr #, ~6!

where

Gr52 lnE dm ~S!expS 2b (
s51

n

e~Ws;S!D . ~7!

Assuming a largeM , we obtainGr up to the zeroth order in
1/M ,
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wheres,r are replica indices. We assume that the weights
of the teacher are uncorrelated such that (1/
N)( iWji

0Wj 8 i
0

5d j j 8.
Analyzing the energy function, we find two symmetries in

this network, i.e., the gauge symmetry and the permutation
symmetry. Using these symmetries, we can rearrange the
configuration of the weights so that many degenerate con-
figurations can be described by a single representation. In the
following, we will describe the rearrangement scheme.

The gauge symmetry comes from the fact that the transfer
function is odd. Keeping the outputs unchanged, we can si-
multaneously flip the sign of the second layer weight con-
nected to a particular hidden node, and the sign of every
first-layer weight connected to the same hidden node. Let us
choose a reference output node, sayk51. Then we perform
a transformation:

Wkj
s~2!W1 j

s~2!→Wkj
s~2! ,

~9!

Wji
s~1!W1 j

s~2!→Wji
s~1! .

Under this gauge transformation, a network with binary
weights and a single output node leads to the committee
machine.

The permutation symmetry relates to permutation of the
hidden nodes. A permutation does not change the output of
the network. The next step of rearrangement uses the permu-
tation symmetry. As an example, consider a network with
two output nodes. WhenM is large enough, roughly half the
weightsW2 j

(2) are11 and the rest are21. Then, we rear-
range the order of the hidden nodes using the permutation
symmetry. We divide the weights into two groups, one with
positive sign and the other with negative sign. Now we have
the systematically arranged configuration:

W1
s~2!5~ . . . ,W1 j

~2! , . . . !5~1, . . .,1,1, . . . ,1!,

~10!

W2
s~2!5~ . . . ,W2 j

~2! , . . . !5~1, . . . ,1,21, . . . ,21!.

The first line is the result of the gauge transformation. If we
have a third output we can repeat a similar permutation in
each block ofW2 j

(2) and the weights are arranged as

W3
s~2!5~1, . . . ,1,21, . . . ,21,1, . . . ,1,21, . . . ,21!.

~11!

In this way, the hidden nodes and the second-layer weights
decompose into blocks. We can generalize this procedure for
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K output nodes, as long as the number of hidden nodes in
each block is large enough, i.e.,MK5M /2K21@1.

The phase transition by permutation symmetry breaking
plays an essential role in learning of the committee machine.
The permutation of the hidden nodes of a given teacher
yields many different teachers with the same input-output
relations. Many alternative teachers also can be realized by
permuting the hidden nodes.

Let us consider the energy surface in the phase space of
$W%. Each teacher is at a minimum of the energy surface.
For a smallP, all the teachers belong to a single thermally
connected region in the phase space. A student does not
know from which teacher to learn, and the student is roughly
equidistant from all the transformed teachers. We will call
this the PS phase of the network. AsP becomes of order
MN, many thermally disconnected valleys appear around the
permuted teachers. This phase is called the PSB phase.

Now the order parameters,

Qj j 8
sr

5KK K 1N(
i
Wji

s~1!Wj 8 i
r~1!L

T

LL ~12!

and

Rj j 8
s

5KK K 1N(
i
Wji

s~1!Wj 8 i
0~1!L

T

LL , ~13!

are defined in the rearranged representation. We assume a
replica symmetric ansatz:

Qj j 8
sr

5H ~12d j j 8!Cj j 81d j j 8q, sÞr,

~12d j j 8!Qj j 81d j j 8, s5r,

Rj j 8
s

5~12d j j 8!Rj j 81d j j 8r .

Here, the diagonal order parametersq and r measure the
preference for a particular implementation of the teacher.
The off diagonal matricesC(Cj j 8), Q(Qj j 8), and R(Rj j 8)
represent the order parameters between different hidden
nodes. In the PS phase, the student cannot recognize a par-

ticular teacher. The role of each hidden node is not special-
ized, so the off-diagonal order parameters play an important
role. The diagonal order parameters dominate in the PSB
phase, where the student is similar to a particular teacher.
Each hidden node specializes its role.

We expect that the matricesC, Q, andR form block ma-
trices. The dimension of the blocks is assumed to be
MK3MK . It comes from the fact that permutation is al-
lowed among the hidden nodes in each block of sizeMK .
Each block has a constant matrix element in the limit
MK→`. Typical forms of the matrices for two outputs and
three outputs are shown below:

a b

b a

a b c d

b a d c

c d a b

d c b a

As for the committee machine, the overlap order param-
etersC,Q,R are of order 1/M . We can expand sin21( ) for
jÞ j 8 in Eq. ~8!. To leading order in 1/M the free energy is
expressed in terms of

1

M
Wk

s~2!CWk8
r~2!

5dkk8lCk ,

1

M
Wk

s~2!QWk8
s~2!

5dkk8lQk , ~14!

1

M
Wk

s~2!RWk8
0~2!

5dkk8lRk ,

wherelCk ,lQk , andlRk are thekth eigenvalues ofC Q,
andR, respectively. The rearranged second-layer weights are
eigenvectors of the order parameter matrices. Therefore only

FIG. 1. The generalization curve of two-layer networks when
P;O(N). M5N531 andK51,2, 5, respectively, andT52.5.
The solid line is the analytic plot obtained by the replica trick and
the horizontal line denotese05 lima→`eg .

FIG. 2. Snapshot of the matrix elementsRj j 8 for a network
N516, M58, K52, and temperatureT52.5. The vertical line
denotes the theoretical phase transition pointac8(K52).8.46/2.
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the case withk5k8 contributes. Now the free energy is a
function of the eigenvalues rather than the matrix elements
themselves. Note that the eigenvalues are of order 1 while
the matrix elements are of order 1/M .

Now we take then→0 limit and findq,r and the eigen-
valueslCk ,lQk , andlRk by the saddle point approximation
in the thermodynamic limit. As in Ref.@14#, we consider two
different regimes, whereP is O(N) andO(MN), respec-
tively.

~i! P;O(N). Here only the PS phase exists and
r5q50. The free energy of the system can be written as:

2bF5KN~G01aGr !, ~15!

G052
1

2
lQ1

1

2

lC2lR
2

11lQ2lC
1
1

2
ln~11lQ2lC!,

~16!

Gr52aE
2`

`

Dx H~ax!ln@e2b1~12e2b!H~bx!#,

~17!

with

a5
~2/p! lR

A~2/p! lC2@~2/p! lR#2
,

b5A ~2/p! lC

11 ~2/p! ~lQ2lC!
, ~18!

where* Dx5*dx e2x2/2 andH(u)5*u
` Dx. The generaliza-

tion error is given by:

eg5
1

p
cos21S ~2/p! lR

A11 ~2/p! lQ
D . ~19!

Note that thek dependence of thelCk ,lQk , andlRk is
removed since the saddle point equation is the same for all
k. Minimizing the free energy with respect tolC ,lQ , and
lR , we find the generalization error. The free energy has the
same formn as for the fully connected committee machine
except for the multiplicative factorK. For K51, the eigen-
valueslC ,lQ ,lR reduce to the corresponding matrix ele-
ments for the committee machine@14,15#. It explains the
surprising result that the learning curve is the same as that of
the committee machine irrespective of the number of output
nodes.

This interesting result is confirmed by the Monte Carlo
simulation. Figure 1 shows the learning curve from the nu-
merical simulation along with the analytic result obtained by
the replica calculation. In this simulation we use networks
with different numbers of outputs,K51, 2, and 5, respec-
tively. The number of input and hidden nodes is the same,
i.e.,N5M531. When we ploteg(a), all the learning curves
with different numbers of outputs collapse to a single curve
that also agrees well with the replica calculation.

~ii ! P;O(MN). We introduce a scaling for the free en-
ergy, and the free energy is written as

2bF5MN~G01Ka8Gr !, ~20!

wherea85P/MN,

G052
1

2
~12q!q̂2RR̂1E Dzlncosh~Aq̂z1 r̂ !, ~21!

Gr52aE
2`

`

Dx H~ax!ln@e2b1~12e2b!H~bx!#,

~22!

with

a5
~2/p!~sin21r1lR!

@~2/p!@sin21q2q1~r1lR!2#2~2/p!2~sin21r1lR!2#1/2
,

b5A~2/p!@sin21q2q1~r1lR!2#122/p2~2/p!~sin21q2q!. ~23!

The generalization error is given by

eg5
1

p
cos21F ~2/p! ~sin21r1lR!

A12 ~2/p! 1 ~2/p! ~r1lR!2
G . ~24!

In the above expressions,lQ andlC are eliminated by the
saddle point equation,

11lQ5q1lC5~r1lR!2. ~25!

There are two solutions that minimize the free energy. One is
the PS solution whereq5r50, andlC ,lQ ,lR are nonzero.
We find that this solution describes the limita→` for
P;O(N). The generalization error is also a nonzero con-

stant, which coincides with the asymptotic value ofeg in the
limit a→` for P;O(N). Increasing the number of ex-
amples, the system reaches the PSB phase by a first-order
phase transition. The PSB solution is given byq5r51 and
lC5lQ5lR50. This means that the student becomes an
exact copy of one of many equivalent teachers made by the
transformations explained above. The generalization error
vanishes in the PSB phase. When we compare the expression
for the free energy with that of the committee machine, we
find that a8 is replaced byKa8. The new transition point
ac8 therefore scales with the number of the outputs as

ac8~K !5
1

K
ac8~K51!. ~26!
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Observing the behavior of the order parameter matrices in
the simulation is a good way to check the phase transition.
Figure 2 show a snapshot of the matrix elementsRj j 8 mea-
sured from the simulation of the network with two output
nodes. The theory predicts that the matrix elements should
split into two different valuesRj j 8;O(1/M ) andRj j 850 in
the PS phase, andRj j 851 and 0 in the PSB phase. The
observed values of the matrix elementRj j 8 show the ex-
pected picture. The theoretical phase transition point
ac8(K52)51/2ac8(K51) shown by the vertical line also
agrees with the simulation.

Our study can be extended to other situations as was pos-
sible in the study of the committee machine, for example, to
the case of continuous weights in the input layer as in Ref.
@15#, and to the case of the sigmoid transfer function as in
Ref. @14#. We expect that the learning curve in the PS phase
will be the same for differentK and the scaling of the phase
transition point also will be described by Eq.~26! in these
cases. The asymptotic behavior in the PSB phase may be

different. It is now tempting to ask whether the symmetry
breaking and the phase transition are relevant to the back
propagation learning of the multilayer perceptron. With fully
continuous weights the situation is more complicated, so
analytic calculation based on the replica method may not be
feasible. Existence of the first-order transition is also ques-
tionable. However, we believe that the symmetry breaking
still plays an important role in characterizing the nature of
the learning curve. We note that recent large scale simula-
tions of learning curves show qualitatively similar behavior
to that shown in this work@16,17#.
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