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Generalization in a two-layer neural network with multiple outputs
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We study generalization in a fully connected two-layer neural network with multiple output nodes. Similar
to the learning of fully connected committee machine, the learning is characterized by a discontinuous phase
transition between the permutation symmetric phase and the permutation symmetry breaking phase. We find
that the learning curve in the permutation symmetric phase is universal, irrespective of the number of output
nodes. The first-order phase transition point, i.e., the critical number of examples required for perfect learning,
is inversely proportional to the number of outputs. The replica calculation shows good agreement with Monte
Carlo simulation[S1063-651X96)11308-9

PACS numbeps): 87.10+e, 05.50+q, 64.60.Cn

Learning from examples in layered neural networks hasvhich corresponds to the cake=1 in this work. When the
been a common interest of statistical mechanics and otherumber of examples is of the orderf the system is in the
related areas such as computer science and mathematical gg@mutation symmetridPS phase. In the PS phase, the gen-
tistics for the last few year§l]. Following the statistical eralization error decreases more rapidly than expected from
mechanics formulation of Gardnée,3], there have been the asymptotic behavior of the upper bounds predicted by the
many efforts to study learning from examples in feed-Vapnik-Chervonenkis approach and oth¢gs10]. As the
forward neural networks such as the perceptfdn-g8.  number of examples?, grows to the order oMN the gen-
Whereas most of the mathematical approaches gave genef{Rlization error converges to a constant value. When the
asymptotic bound§9,10], statistical mechanics was able to humber of examples reaches a critical value, the system un-
predict a precise learning curve for a specific model. Spedergoes a first-order phase transition driven by permutation
cially, an interesting first-order phase transition was found irsSymmetry breakingPSB. Above the transition point, the
the single-layer perceptron with binary weights. This first-System immediately falls into a state of perfect learning.
order phase transition was interpreted as a sudden learning of The motivation of this work is to study whether this pic-
the perceptron related to the discrete phase space structUtée is also relevant in a network with multiple output nodes.
[5,6,8. Recently, there has been also some progress in thEhe discontinuous learning curve is also observed in the neu-
study of the generalization in multilayered neural networksral network with multiple output nodes. Interestingly the
from a statistical physics perspective. Special attention walgarning curve in the permutation symmetric phase is the
paid to a two-layer network called a committee machine, angame irrespective of the number of output nodes. However,

a discontinuous phase transition originating from a differenthe first-order transition occurs for a smaller number of ex-
mechanism was found.1-15. amples, inversely proportional to the number of outputs.

Most of the studies of generalization have concernedrhese results are obtained from the replica calculation and

learning of a network with a single output node. In particu-the Monte Carlo simulation.

lar, theoretical studies concentrate on learning a dichotomy We consider a student network learning a realizable rule
rule. On the other hand, neural networks used for real worldrom the examples provided by a teacher with the same ar-
applications, such as classification tasks, usually need mu¢hitecture.  The  network maps input  vectors,
tiple output nodes. Understanding the effect of multiple out-S =(S}, . . . ,Sy) to output vectorsg= (a4, . .. o) as

put in a multilayer perceptron would be a meaningful step,

which extends the relevance of the theory from toy models to

more realistic neural networks. It can reduce the gap between o(W;S)=g,
theories and practice.

Here, we present a study of generalization in a fully con- 1) \wn - . .
nected two-layer perceptron with multiple output nodes Here, W={W{") W(F)} is a set of synaptic weights whose

Consider a two-layer neural network witd input nodes, elementW(? denotes the first-layer weight between flie
M hidden nodes, anil output nodes. In the fully connected input node and thgth hidden node, aniiviZ) denotes the
architecture, each input node is connected to all the hiddegecond-layer weight between théh hidden node and the
nodes and each hidden node is connected to all the outpkth output node. The transfer functions of the hidden nodes
nodes. In this study, we consider binary weights and take thand the output nodes agg(x) andg,(x), respectively. In
limit where N>M>1. this paper, we will consider the caseg;(x)

In our previous work14], we studied generalization in a =g,(x)=sgn(). The weights of the teacher are given by
fully connected committee machine with binary weights, W0={W5®" W},

M N
1 1
M—z; W9, N‘iZi w}il)a'”. (1)
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The energy of the system is defined as a sum of error§Ve use the Monte Carlo method to simulate this training
over output nodes and examples: algorithm.

The performance of the network is measured by the gen-
eralization functione(W)=(1/K) [dSe(W;S), where [dS

E=|§l «(W;9), (2) represents an average over the whole space of inputs. The
generalization errog, is defined byey=(((e(W))+)) where
K {()) denotes the quenched average over the examples and
e(W;g)zkE1 O(— o (WP S) o (W; S)), ) §4>)T denotes the thermal average over the distribution of Eq.

where®(x) is the Heaviside step function. The training pro- The replica partition function can be writien as

cedure is assumed to be a stochastic process that leads to a

Gibbs distribution of the weights after a long time. The equi- (2" =Trwexd PG1, (6)
librium probability distribution of weights is given by
where
P(W)=Z""exy — BE(W)], 4 )
where B is the inverse temperature and the normalization grz—lnf du (S)exp( -8 e(W";S)). (7
factor Z is the partition function: o=1

Assuming a largeM, we obtaing, up to the zeroth order in

z=f du (Wyexd — BE(W)]. (5) 1M,

dugduy

dvdo AP O
exp[gr]=f 11— ffk[ %exp[—égk {92000 = Ga(v) 41 2 U+ X vidi— 52 vi}

1 1 2 1
_ = nNonp a(\AP(2) i1 T a(L)yae(1)
Xex[{ ZkEk/ UZP ukuk,M§ G2 WD) —sin (NZ wiwes )

1
Nz Wqu(l)W?’(il)) }' (8)

a1 2
NS “?”k'mZ wywe?, Zsin 1(
1]

kk" o

whereo,p are replica indices. We assume that the weights The permutation symmetry relates to permutation of the
of the teacher are uncorrelated such that (1hidden nodes. A permutation does not change the output of
N)EiWJQiW?'i: 8. the network. The next step of rearrangement uses the permu-
Analyzing the energy function, we find two symmetries in tation symmetry. As an example, consider a network with
this network, i.e., the gauge symmetry and the permutatiofw0 output nodes. Wheht is large enough, roughly half the
symmetry. Using these symmetries, we can rearrange th&eights W) are +1 and the rest are-1. Then, we rear-
configuration of the weights so that many degenerate conange the order of the hidden nodes using the permutation
figurations can be described by a single representation. In tigymmetry. We divide the weights into two groups, one with
following, we will describe the rearrangement scheme. positive sign and the other with negative sign. Now we have
The gauge symmetry comes from the fact that the transfelhe systematically arranged configuration:
function is odd. Keeping the outputs unchanged, we can si-

multaneously flip the sign of the second layer weight con- WiP=( W) =(1, .., D),
nected to a particular hidden node, and the sign of every (10)
first-layer weight connected to the same hidden node. Let us

choose a reference output node, &ayl. Then we perform WP = WS, ) =(1,...,1-1, ...~ 1),

a transformation: o _
The first line is the result of the gauge transformation. If we
Wy AWy 2 —wg?) have a third output we can repeat a similar permutation in
(9) each block oi\N(z? and the weights are arranged as
W OWT 2wt w§?=(1,...,1-1,...-11,...,1-1,...,—1).
11

Under this gauge transformation, a network with binary
weights and a single output node leads to the committeén this way, the hidden nodes and the second-layer weights
machine. decompose into blocks. We can generalize this procedure for
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FIG. 1. The generalization curve of two-layer networks when '
P~O(N). M=N=31 andK=1,2, 5, respectively, and =2.5.
The solid line is the analytic plot obtained by the replica trick and  FIG. 2. Snapshot of the matrix elemerfg;, for a network
the horizontal line denoteg=I1im,,_..€4 . N=16, M=8, K=2, and temperaturd=2.5. The vertical line

denotes the theoretical phase transition paiftk =2)=8.46/2.

K output nodes, as long as the number of hidden nodes in . . .
each block is large enough, i.éd=M/2<"1>1. ticular teacher. The role of each hidden node is not special-

The phase transition by permutation symmetry breakin jzed, so the off-diagonal order parameters play an important

plays an essential role in learning of the committee maching ©'¢: The diagonal order parameters dominate in the PSB
hase, where the student is similar to a particular teacher.

The permutation of the hidden nodes of a given teaCheEach hidden node specializes its role.

yields many different teachers with the same input-outpu . i
relations. Many alternative teachers also can be realized b?(ic\(/evse e?ﬁscgfgaetntginmi;r'iﬁ %’lscndeRigor:Sg:;:g dm?o be

permuting the hidden nodes. T

Let us consider the energy surface in the phase space ov'f/; dMa};ﬁollfn C(t)hrgeﬁiggc:r? r:r;?jefs?; tgzéhpﬁmfff'on is al
{W}. Each teacher is at a minimum of the energy surface 9 . of dke.
Each block has a constant matrix element in the limit

For a smallP, all the teachers belong to a single thermally . .
connected region in the phase space. A student does nN{K_’OO' Typical forms of the matrices for two outputs and
y ree outputs are shown below:

know from which teacher to learn, and the student is roughl

equidistant from all the transformed teachers. We will call

this the PS phase of the network. & becomes of order a b c d

MN, many thermally disconnected valleys appear around the

permuted teachers. This phase is called the PSB phase.
Now the order parameters,

Q”’f=<< <%2 Wﬁ<1)wlqafil>> >> (12) b a c d a b
T

1 As for th itt hine, th | d -
o o_ - a(D\A0(1) s for the committee machine, the overlap order param
Rji’ << <NE| Wi W?l >T>> (13 etersC,Q,R are of order M. We can expand siff() for

j#]’ in Eq.(8). To leading order in M the free energy is

are defined in the rearranged representation. We assumeegpressed in terms of
replica symmetric ansatz:

1 2
MW?(Z)CW& '= SNk

Qap_[(l_éJl’)CJl’+5ll'q' (T?ﬁp,
jj’_ (1_5,)Q,+5,, U:p, 1
ij") i
MWE—(Z)QVVE—,(Z) = 5kk’)\Qk’ (14)
1 (2) (2)
Here, the diagonal order parametersand r measure the MW? RV\er = Okkr MRk

preference for a particular implementation of the teacher.

The off diagonal matrice<C(Cj;/), Q(Qj;-), and R(Rj;-) where A, Mgk, and gy are thekth eigenvalues oC Q,
represent the order parameters between different hiddesmdR, respectively. The rearranged second-layer weights are
nodes. In the PS phase, the student cannot recognize a paigenvectors of the order parameter matrices. Therefore only
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the case withk=k’ contributes. Now the free energy is a
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Note that thek dependence of thecy,Agk, andAgy is

function of the eigenvalues rather than the matrix elementsemoved since the saddle point equation is the same for all
themselves. Note that the eigenvalues are of order 1 whilk. Minimizing the free energy with respect - , Ao, and

the matrix elements are of order/

Now we take then—0 limit and findq,r and the eigen-
valuesk ¢y, A gk, andigy by the saddle point approximation
in the thermodynamic limit. As in Ref14], we consider two
different regimes, wher® is O(N) and O(MN), respec-
tively.

AR, We find the generalization error. The free energy has the
same formn as for the fully connected committee machine
except for the multiplicative factdK. For K=1, the eigen-
valuesAc,hq,Ag reduce to the corresponding matrix ele-
ments for the committee machirié4,15. It explains the
surprising result that the learning curve is the same as that of

(i) P~O(N). Here only the PS phase exists andthe committee machine irrespective of the number of output

r=qg=0. The free energy of the system can be written as:

—BF=KN(Gy+ aG,), (15
1 1 Ae—A%Z 1

GO—_E)\Q'FETQ_)\C'FE“’](].-F)\Q_}\C),
(16)

Gr=2a£c Dx H(ax)In[e #+(1—e #)H(bx)],
17

with
J@imne—[(@2Im) \g

b= \/1+ (2/m) (hg—Ao)’ (18

wheref Dx=fdx e **2 andH(u)= [ Dx. The generaliza-
tion error is given by:

nodes.

This interesting result is confirmed by the Monte Carlo
simulation. Figure 1 shows the learning curve from the nu-
merical simulation along with the analytic result obtained by
the replica calculation. In this simulation we use networks
with different numbers of output& =1, 2, and 5, respec-
tively. The number of input and hidden nodes is the same,
i.e.,,N=M=31. When we plok,(a), all the learning curves
with different numbers of outputs collapse to a single curve
that also agrees well with the replica calculation.

(i) P~O(MN). We introduce a scaling for the free en-
ergy, and the free energy is written as

—BF=MN(Go+Ka'G,), (20)

wherea’ =P/MN,

GO:_%(l_q)Q—RthjDzlncosr(\/aerF), (21)

Gr=2aj°c Dx H(ax)Infe A+ (1—e #)H(bx)],

1 _1( (2/7) g ) (22)
€g=—C0S }| ———]. (19)
™ V1+(2/m) N g with
|
B (2/7)(sin” r+\R)
A= [(2Im[sin Iq—q+ (r +Ap)2]— (2/m)2(sin Tr+ )22’
b= \(2/m)[sin q—q+ (r +Ag)2]1—2/7— (2/7)(sin q—q). (23

The generalization error is given by stant, which coincides with the asymptotic valueegfin the

limit a«—o for P~O(N). Increasing the number of ex-
amples, the system reaches the PSB phase by a first-order
phase transition. The PSB solution is givendpyr=1 and
Ac=Ao=Ag=0. This means that the student becomes an
exact copy of one of many equivalent teachers made by the
transformations explained above. The generalization error
vanishes in the PSB phase. When we compare the expression
for the free energy with that of the committee machine, we
find that a’ is replaced byKa'. The new transition point

There are two solutions that minimize the free energy. One i§'c therefore scales with the number of the outputs as

the PS solution wherg=r=0, and\¢,\q,Ag are nonzero.
We find that this solution describes the limit—oo for
P~O(N). The generalization error is also a nonzero con-

1 (2/ar) (sin”rr+AR)
€g=_COS N At
—(2/7) + (2/7) (r+ \p)

(24

In the above expressionkg and A are eliminated by the
saddle point equation,

1+No=g+Nc=(r+\p)2 (25)

aé(K)Z%aé(KZD. (26)
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Observing the behavior of the order parameter matrices idlifferent. It is now tempting to ask whether the symmetry
the simulation is a good way to check the phase transitionbreaking and the phase transition are relevant to the back
Figure 2 show a snapshot of the matrix elemeRis mea-  propagation learning of the multilayer perceptron. With fully
sured from the simulation of the network with two output continuous weights the situation is more complicated, so
nodes. The theory predicts that the matrix elements shoulgnalytic calculation based on the replica method may not be
split into two different values®;;; ~O(1/M) andR;;»=0in  feasible. Existence of the first-order transition is also ques-
the PS phase, an®;;;=1 and 0 in the PSB phase. The tionable. However, we believe that the symmetry breaking
observed values of the matrix elemeRf;; show the ex- |l plays an important role in characterizing the nature of
pected picture. The theoretical phase fransition poinihe |earning curve. We note that recent large scale simula-
ac(K=2)=12a;(K=1) shown by the vertical line also (ons of learning curves show qualitatively similar behavior
agrees with the simulation. o to that shown in this work16,17.

Our study can be extended to other situations as was pos- j 4 0. and C.K. was supported in part by KOSEF through

sible in the study of the committee machine, for example, 1% rant No. 941-0200-030-2 and the Korea Ministry of Edu-

the case of continuous weights in the input layer as in R(?fcation through the POSTECH Basic Science Research Insti-

[15], and to the case of the sigmoid transfer function as Mute. C. K. and Y. P. were also supported by the Center for

Ref.[14]. We expect that the learning curve in the PS phas . : ! X :
will be the same for differenK and the scaling of the phase i—gﬁgirritg:ld iﬂ%ﬁlciroor; StﬁguIKlglfet;)ns;;g;’(:ef'%fnngattigﬁ
transition point also will be described by E@®6) in these '

cases. The asymptotic behavior in the PSB phase may b]eggg_
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